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Guruswami-Sudan Decoding of Elliptic Codes
Through Module Basis Reduction

Yunqi Wan , Member, IEEE, Li Chen , Senior Member, IEEE, and Fangguo Zhang

Abstract— This paper proposes the Guruswami-Sudan (GS)
list decoding algorithm for one-point elliptic codes, in which
the interpolation is realized by the module basis reduction
(BR). Elliptic codes are a kind of algebraic-geometric (AG)
codes with a genus of one. Over the same finite field, they
have a greater codeword length than Reed-Solomon (RS) codes,
capable of correcting more errors. The GS decoding consists of
interpolation and root-finding, while the former that determines
the interpolation polynomial Q(x, y, z) dominates the decoding
complexity. By defining the Lagrange interpolation function over
an elliptic function field, a basis of the interpolation module
can be constructed. The desired Gröbner basis that contains
Q(x, y, z) can be determined by reducing the constructed basis.
This is namely the BR interpolation and it requires less finite
field arithmetic operations than the conventional Kötter’s inter-
polation, facilitating the GS decoding. Re-encoding transform
(ReT) is further introduced to facilitate the BR interpolation.
This work also shows that both the BR interpolation and its
ReT variant will have a lower complexity as the code rate k/n
increases, where n and k are the length and dimension of the code,
respectively. Our numerical results demonstrate the complexity
advantage of the BR interpolation over Kötter’s interpolation,
and the performance advantage of elliptic codes over RS codes.

Index Terms— Algebraic-geometric codes, basis reduction,
elliptic codes, Gröbner basis, interpolation, list decoding.

I. INTRODUCTION

ALGEBRAIC-GEOMETRIC (AG) codes were introduced
by Goppa [1]. They are constructed based on algebraic

curves over a finite field. Reed-Solomon (RS) codes can be
seen as a special class of AG codes that are constructed from
a straight line. Hence, the length of an RS code cannot exceed
the size of the finite field, limiting the code’s minimum Ham-
ming distance and the number of errors that can be corrected
by the code. However, there exist other algebraic curves on
which the number of rational points1 can be greater than the
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1Rational points are points on algebraic curves with all their coordinates

from the finite field.

size of the field. This gives AG codes the codeword length
and distance advantages over RS codes. Therefore, AG codes
have the potential to replace RS codes in communication and
storage systems. They can also be applied in cryptography and
complexity theory. For an AG code, its minimum Hamming
distance would be lower bounded by the designed distance d∗,
where d∗ = n−k−g+1, n and k are the length and dimension
of the code, respectively, and g is the genus of the curve.
Note that for RS codes, g = 0 and they become the maximum
distance separable (MDS) codes. For AG codes, g > 0, they
are usually not MDS codes. In the AG family, Hermitian
codes have a large codeword length and Hermitian curves
also exhibit rich structural symmetries which are beneficial
for coding practice. However, their codeword length comes
at the cost of a large genus penalty. For elliptic codes,
g = 1. They are either MDS2 or almost MDS codes, yielding
a good tradeoff between its codeword length and distance
property.

Decoding of AG codes can be categorized into the syndrome
based approach and the interpolation based approach. The
syndrome based decoding algorithms yield a unique decoded
message. Syndromes are used to determine the error locations
and their magnitudes. Driencourt [2] presented a decoding
algorithm for elliptic codes, which is the early syndrome
based decoding for the code. It can correct at most �d∗−1

4 �
errors. Following Peterson’s algorithm [3] for decoding
BCH codes, Justesen et al. [4] proposed a decoding algorithm
for a class of AG codes based on plane curves. Skorobogatov
and Vladut [5] further generalized the algorithm to decode
AG codes that are constructed from an arbitrary alge-
braic curve, presenting an algorithm that can correct at
most �d∗−1

2 � errors. By introducing majority voting for the
unknown syndromes, Feng and Rao [6] proposed a decod-
ing algorithm for one-point AG codes that can correct up
to �d∗−1

2 � errors. Duursma [7] further extended the algo-
rithm to decode arbitrary AG codes. The original Berlekamp-
Massey (BM) algorithm on univariate linear recurring relation
was generalized by Sakata [8] to the multivariate domain
for decoding AG codes, which is called the BMS algo-
rithm. Based on the majority voting and the BMS algorithm,
Sakata et al. [9] presented a more efficient decoding algorithm
for AG codes, with a complexity of O(n7/3). Its performance
in decoding Hermitian codes over wireless channels has been
later investigated by Johnston and Carrasco [10], shedding
lights on their practical applications. Based on the shift-register

2The condition for an elliptic code being MDS will be explained
in Section II.A.
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synthesis techniques, Schmidt et al. [11] proposed power
decoding for low rate RS codes, which can correct more than
�d∗−1

2 � errors. Nielsen and Beelen [12] further generalized it
to decode low rate Hermitian codes.

The interpolation based algebraic list decoding has an error-
correction capability beyond �d∗−1

2 �. Sudan [13] first proposed
the decoding concept for low rate RS codes. Shokrollahi and
Wasserman further generalized it for low rate AG codes [14].
By constructing a curve that passes through all interpolation
points with a certain multiplicity, Guruswami and Sudan [15]
later improved it to decode all rate RS and AG codes, namely,
the Guruswami-Sudan (GS) algorithm. It can correct up to
n − �√n(n− d∗)� − 1 errors. The GS algorithm consists
of interpolation and root-finding, where the former dominates
the decoding complexity. Interpolation constructs a minimum
polynomial that has a zero of multiplicity m over a set of
interpolation points. This construction can be realized by
Kötter’s iterative polynomial construction [16]. The decoded
message can be obtained by finding roots of the interpolation
polynomial. Soft-decision algebraic list decoding of RS codes
was later proposed by Kötter and Vardy [17]. To facilitate
Kötter’s interpolation, re-encoding transform (ReT) has been
introduced [18]. By defining the zero basis for each affine
point, Høholdt and Nielsen [19] presented a mathematical
framework for GS decoding of Hermitian codes, including
Kötter’s interpolation as the key decoding step. Under Kötter’s
interpolation paradigm, soft-decision algebraic list decoding
of Hermitian codes was later proposed by Chen et al. [20].
Recently, GS decoding of elliptic codes using Kötter’s inter-
polation was proposed by the authors [21].

The other interpolation technique is from the perspective
of the Gröbner basis of a module [22]. One may form
the basis of a module that contains polynomials with the
interpolation multiplicity and degree constraints. The basis will
be further reduced, yielding the Gröbner basis that contains
the desired interpolation polynomial. This is called the basis
reduction (BR) interpolation [23]. In comparison with Kötter’s
interpolation for decoding AG codes, it not only requires less
computation, but also eliminates the need of pre-computing
the zero basis for each affine point and the corresponding
coefficients [24], [25]. Lee and O’Sullivan proposed the
GS decoding of Hermitian codes using the BR interpola-
tion [26]. They later generalized the interpolation technique for
soft-decision algebraic list decoding of Hermitian codes [27].
Both the Lee-O’Sullivan algorithm [26] and the Mulders-
Storjohann (MS) algorithm [28] can be used to reduce the
module basis into a Gröbner basis. Other facilitating tech-
niques for the basis reduction process include the Alekhnovich
algorithm [29] and the Giorgi-Jeannerod-Villard (GJV) algo-
rithm [30]. Applying the former, Beelen and Brander reduced
the complexity in finding the interpolation polynomial for
a class of AG codes [31]. Applying the latter, Nielsen and
Beelen also presented a fast GS decoding algorithm for
Hermitian codes [12].

This paper introduces the GS decoding of one-point ellip-
tic codes using the BR interpolation. In order to construct
the basis of a module, the Lagrange interpolation functions
over the elliptic function field are introduced. They lead to

the formulation of the module basis generators. The con-
structed basis will be reduced to the desired Gröbner basis by
Lee-O’Sullivan’s algorithm [26], from which the interpolation
polynomial Q(x, y, z) can be obtained. In order to further
reduce the interpolation complexity, the ReT is introduced for
the decoding. It transforms the received word into containing
at least ε zero symbols, where ε = k − 1 or k − 2. This
results in basis generators of the module sharing a common
factor which can be removed to reduce the basis reduction
complexity. This work shows that the BR interpolation exhibits
a complexity of O(l3 m2n(n − k)), where m is the inter-
polation multiplicity and l is the maximum decoding output
list size. The ReT can help reduce it to O(l3 m2(n − k)2).
Hence, both the BR interpolation and its ReT variant will have
a lower complexity as the code rate k/n increases. This is
in contrast to Kötter’s interpolation whose complexity grows
with the rate. This work also discusses the impact of using the
Alekhnovich algorithm and the GJV algorithm for the basis
reduction process. They are capable to reduce the complexity
into quasi-linear in n. However, we show that such complexity
advantage can only be realized when n is so large that beyond
the current practical interest. Finally, our numerical results
demonstrate the complexity advantage of the BR interpola-
tion over Kötter’s interpolation in decoding elliptic codes,
as well as the performance advantage of elliptic codes over
RS codes.

II. BACKGROUND KNOWLEDGE

A. Elliptic Codes

Let Fq denote the finite field of size q. An elliptic curve E in
homogeneous coordinates over Fq is defined by a nonsingular
Weierstrass equation

Y 2Z + a1XYZ+a3Y Z
2 =X3 + a2X

2Z + a4XZ
2 + a6Z

3,

(1)

where a1, a2, a3, a4, a6 ∈ Fq. On E, there exists the point of
infinity P∞ = (0, 1, 0). With Z = 1, curve

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (2)

becomes an affine component, which is called the affine curve.
Points on the curve are called affine points. They are denoted
as Pi = (xi, yi). Let E(Fq) denote the set of Fq-rational
points on E as E(Fq) = {Pi}

⋃{P∞}. They form an additive
Abelian group based on the “chord-and-tangent” rule with P∞
as the identity element [32]. Let −Pi denote the inverse of
Pi, Pi and −Pi are the only affine points on E with the same
x-coordinate. For any Pi, there exists a smallest nonnegative
integer δ such that δPi = P∞, where δ is the order of Pi.
It divides the order of E(Fq). Coordinate ring of E is an
integral domain, i.e.,

R = Fq[X,Y ]/ < Y 2 + a1XY + a3Y

−X3 − a2X
2 − a4X − a6 >= Fq[x, y], (3)

where x and y denote the residue classes of X and Y ,
respectively. Elements of R are bivariate polynomials with
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y-degree less than two. Based on E, its function field Fq(E)
would be the quotient field of R.

Given h ∈ Fq(E), its order at a rational point P is vP (h),
where vP (·) denotes the valuation of h at P [32]. There
exists a function Λ which is called the local parameter of P .
It enables vP (Λ) = 1 and h = ΛvP (h)h�, where vP (h�) = 0.
If vP (h) > 0, h has a zero of order vP (h) at P . Otherwise,
it has a pole of order −vP (h) at P . For elliptic curves,
−vP∞(x) = 2, −vP∞(y) = 3 and −vP∞(xλyγ) = 2λ+ 3γ.

Definition 1 ([32]): For each point P , we define a formal
symbol [P ]. Let nP denote an integer that corresponds to P ,
D =

∑
P∈E(Fq) nP [P ] is a divisor of E. It has a degree

of deg(D) =
∑

P∈E(Fq) nP and a sum of sum(D) =∑
P∈E(Fq) nPP .

Definition 2 ([32]): If h ∈ Fq(E) and h �= 0, the divisor
of h is defined as div(h) =

∑
P∈E(Fq) vP (h)[P ]. div(h) is

also called the principal divisor of E.
For any divisorD, let L(D) denote the Riemann-Roch space

defined by D. Therefore, L(u[P∞]) = {h ∈ Fq(E)|div(h) +
u[P∞] � 0}⋃{0} has a basis consisting of

{φa = xλyγ | 2λ+ 3γ ≤ u, λ ∈ N, γ ∈ {0, 1}} (4)

which satisfies −vP∞(φa) < −vP∞(φa+1), where “ ��� indi-
cates that the coefficients of div(h) + u[P∞] are nonnegative
and N denotes the set of nonnegative integers. The basis of (4)
is called the pole basis. Consequently, R =

⋃∞
u=0 L(u[P∞]).

If h ∈ R, it can be written as h =
∑
ζaφa, where ζa ∈ Fq,

and −vP∞(h) = max{−vP∞(φa) | ζa �= 0}.
Given n distinct affine points P0, P1, . . . , Pn−1, a divisor

G =
∑n−1

i=0 [Pi] can be formed. Let f ∈ L(k[P∞]) denote the
message polynomial that is

f(x, y) = f0φ0 + f1φ1 + · · · + fk−1φk−1, (5)

where f0, f1, . . . , fk−1 ∈ Fq are the message symbols. Based
on E, an (n, k) one-point elliptic code can be generated by
the following evaluation

CE (G, k[P∞]) ={(f(P0), f(P1), . . . , f(Pn−1)) ,
∀f ∈ L(k[P∞])}, (6)

where codeword c = (c0, c1, . . . , cn−1) = (f(P0), f(P1), . . . ,
f(Pn−1)) ∈ Fn

q . Its minimum Hamming distance3 d ≥ d∗ =
n− k.

The above description shows that the number of affine
points on the curve defines the length of the code. Based on
the Hasse-Weil bound [34], the maximum number of rational
points on a curve defined over Fq is q + g�2√q� + 1, where
g is the genus of a nonsingular curve of degree b and g =
(b−1)(b−2)

2 . For elliptic curves, b = 3, g = 1 and |E(Fq)| ≤
q+�2√q�+1. It should be pointed that the existence of affine
points of order two will make the following interpolation mod-
ule basis construction cumbersome. Therefore, when designing
an elliptic code, the curve coefficients a1, a2, a3, a4, a6 should
be chosen appropriately, so that the curve does not have affine

3Note that an (n, k) elliptic code will be an MDS code if and only if for
any {Pi1 , Pi2 , . . . , Pik

} ⊆ {P0, P1, . . . , Pn−1}, [Pi1 ] + [Pi2 ] + · · · +

[Pik
] − k[P∞] is not a principal divisor [33].

points of order two, but the number of rational points can
still reach the Hasse-Weil bound. Therefore, in this paper,
the constructed elliptic codes have length q + �2√q�.

B. The GS Decoding

Let R[z] denote the polynomial ring defined over R
and R[z]l = {Q ∈ R[z] | degz Q ≤ l}. Given r =
(r0, r1, . . . , rn−1) ∈ Fn

q as a received word, it can be seen
as a variant of c, i.e., r = c + e, where e ∈ Fn

q is an error
vector.

The GS decoding consists of interpolation and root-finding.
First, let us define P as the set of n interpolation points

P = {(P0, r0), (P1, r1), . . . , (Pn−1, rn−1)}. (7)

Interpolation: Given a received word r and the decoding
parameters m and l, construct a nonzero minimum polynomial
Q(x, y, z) =

∑l
j=0 Q[j](x, y)zj ∈ R[z]l, it interpolates all

points of P with a multiplicity of m.
Root-finding: Given the interpolation polynomial Q(x, y, z),

find all z-roots in the form of f(x, y).
A polynomial Q in R[z]l can be written as4

Q =
∑
a∈N

∑
b≤l

Qabφaz
b, (8)

where Qab ∈ Fq. For each affine point Pi, there exists
a basis {ψPi,0, ψPi,1, . . . , ψPi,u−1} of L(u[P∞]) such that
ψPi,μ(xi, yi) = 0 and vPi(ψPi,μ) = μ. Functions of this
basis have an increasing zero order w.r.t. Pi [19]. The com-
plexity of computing the basis is O(u2). Given a pole basis
monomial φa, we have

φa =
∑
μ∈N

ξa,Pi,μψPi,μ, (9)

where ξa,Pi,μ ∈ Fq is the corresponding coefficient between
φa and ψPi,μ [19], [24]. Since

zb = (z − ri + ri)
b =

∑
ν≤b

(
b

ν

)
rb−ν
i (z − ri)

ν , (10)

together with (9) and (10), Q can be written as

Q =
∑
a∈N

∑
b≤l

Qab

⎛⎝∑
μ∈N

ξa,Pi,μψPi,μ

⎞⎠
·
⎛⎝∑

ν≤b

(
b

ν

)
rb−ν
i (z − ri)

ν

⎞⎠
=
∑

μ,ν∈N

(∑
a∈N

l∑
b=ν

Qab

(
b

ν

)
ξa,Pi,μr

b−ν
i

)
ψPi,μ (z − ri)

ν .

(11)

We denote

D(Pi,ri)
μν (Q) =

∑
a∈N

l∑
b=ν

Qab

(
b

ν

)
ξa,Pi,μr

b−ν
i (12)

4In this paper, we denote the intended interpolation polynomial as Q, while
a general polynomial in R[z]l is denoted as Q.
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as the (μ, ν)-Hasse derivative evaluation of Q at (Pi, ri).
If Q(Pi, ri) = 0, Q interpolates (Pi, ri). Furthermore,

if D(Pi,ri)
μν (Q) = 0, ∀ μ + ν < m, Q interpolates the point

with a zero of multiplicity m. Eq. (12) defines the interpolation
constraints for Q. Since there are

(
m+1

2

)
pairs of (μ, ν) that

satisfy μ+ ν < m, interpolating all points of P imposes

C = n

(
m+ 1

2

)
(13)

constraints on Q.
The (1, �)-weighted degree of monomial φaz

b is
deg1,� φaz

b = −vP∞(φa) + �b, where � is determined
by the code dimension k. Given two distinct monomials
φa1z

b1 and φa2z
b2 , we can arrange them in the following

(1, �)-revlex order. We claim ord(φa1z
b1) < ord(φa2z

b2),
if deg1,� φa1z

b1 < deg1,� φa2z
b2 , or deg1,� φa1z

b1 =
deg1,� φa2z

b2 and b1 < b2. Hence, for a polynomial Q ∈
R[z], its (1, �)-weighted degree and leading order can be
defined as deg1,� Q = max{deg1,� φaz

b | Qab �= 0} and
lod(Q) = max{ord(φaz

b) | Qab �= 0}. Therefore, given two
distinct polynomials Q1, Q2 ∈ R[z], we claim Q1 < Q2,
if lod(Q1) < lod(Q2). In decoding an (n, k) elliptic code,
� = −vP∞(φk−1) = k. Note that when applying the re-
encoding transform, if k is odd, � = 1; otherwise, � = 2.
This will be discussed in Section IV.

Therefore, when decoding an (n, k) elliptic code,
the intended interpolation polynomial Q satisfies the above
constraints and being minimum under the above (1, k)-revlex
order. The message polynomial f can be further decoded by
finding z-roots of Q, i.e., Q(x, y, f) = 0. This can be real-
ized by the recursive coefficient search algorithm [35], [36].
The following Theorem shows the condition for a successful
GS decoding.

Theorem 1 ([15]): Given the interpolation polynomial Q
and a polynomial h in the form of (5), if

m(n− |{i | h(Pi) �= ri, ∀i}|) > deg1,k Q, (14)

then Q(x, y, h) = 0 or (z − h) | Q.
Proof: Substituting h into (11) yields Q(x, y, h) =∑

μ,ν∈N

(
D(Pi,ri)

μν (Q)
)
ψPi,μ(h− ri)ν . For point (Pi, ri) that

satisfies h(Pi) = ri, vPi(Q(x, y, h)) = min{vPi(ψPi,μ) +
vPi((h − ri)ν) | D(Pi,ri)

μν (Q) �= 0} ≥ m. Hence, Q(x, y, h)
has a zero of order at least m|{i | h(Pi) = ri, ∀i}| =
m(n− |{i | h(Pi) �= ri, ∀i}|) over the n interpolation points,
i.e.,

∑n−1
i=0 vPi(Q(x, y, h)) ≥ m(n − |{i | h(Pi) �= ri, ∀i}|).

Since h is a polynomial in the form of (5), deg1,k h =
−vP∞(h) ≤ k and −vP∞(Q(x, y, h)) = deg1,k Q(x, y, h) ≤
deg1,k Q(x, y, z). If deg1,k Q < m(n − |{i | h(Pi) �=
ri, ∀i}|), the zero order of Q(x, y, h) is greater than its
pole order. As a result, Q(x, y, h) = 0, or alteratively
(z − h) | Q.

Therefore, if message polynomial f can be decoded, the
GS algorithm corrects |{i | f(Pi) �= ri, ∀i}| errors and this
error-correction capability can be improved by increasing m.
Given an (n, k) elliptic code, the GS algorithm can correct at
most [15]

τGS = n−
⌊√

nk
⌋
− 1 (15)

errors. Given an interpolation multiplicitym, let l and τ denote
the corresponding maximum decoding output list size and the
error-correction capability, respectively. Note that degz Q ≤ l.
The following Theorem characterizes l and τ .

Theorem 2 ([21]): For an (n, k) elliptic code, given an
interpolation multiplicity m, the maximum decoding output
list size

l =

⌊√
nm(m+ 1)

k
+

1
4
− 1

2

⌋
. (16)

If m(n−τ)−kl �= 1, then the decoding can correct at most

τ = n−
⌊

1
m

+
lk

2m
+

(m+ 1)n
2(l+ 1)

⌋
− 1 (17)

errors. Otherwise, it can correct at most

τ = n− 1 + kl

m
(18)

errors.
Proof: Interpolating the n points with a multiplicity of

m imposes C interpolation constraints. Polynomial Q should
contain at least C+1 coefficients so that the linear system will
have a nonzero solution. Therefore,

l = max
{
l | ord(zl) ≤ C

}
.

In GS decoding of an (n, k) elliptic code, monomials are
organized under the (1, k)-revlex order. Since ord(zl) =
ord(zl−1) + |{φaz

b | (l − 1)k < deg1,k φaz
b ≤ lk}| =

ord(zl−1) + lk, ord(zl) = (1 + 2 + · · · + l)k = kl(l+1)
2 .

Substituting it into the above equation leads to eq. (16).
Given r, let τ = |{i | f(Pi) �= ri, ∀i}| denote the number

of errors. Based on Theorem 1, if m(n − τ) > deg1,k Q,

Q(x, y, f) = 0. Hence, any monomials φaz
b of Q should

satisfy deg1,k φaz
b < m(n−τ), and deg1,k φa < m (n− τ)−

kb. Since b = 0, 1, . . . , l, when m(n − τ) − kl �= 1, |{φaz
b |

deg1,k φaz
b < m(n − τ)}| =

∑l
b=0(m(n − τ) − kb − 1) =

m(l + 1)(n− τ) − kl(l+1)
2 − l − 1. Therefore, when

m(l + 1)(n− τ) − kl(l+ 1)
2

− l− 1 > C,

the linear system has a nonzero solution. Solving the above
inequality leads to (17). Otherwise, when m(n− τ)− kl = 1,
(18) can be reached.

C. Basis Reduction Algorithms

We solve the interpolation problem using the BR technique,
which consists of module basis construction and its reduction.
Therefore, some prerequisites on module basis representation
and its reduction need to be given. Consider an Fq[x]-module
I of dimension ρ. Any basis of I can be represented as a
matrix in Fq[x], denoted as Μ.

Definition 3: Let ξ = (ξ0(x), ξ1(x), . . . , ξρ−1(x)) denote a
vector over Fq[x], and w = (w0, w1, . . . , wρ−1) ∈ Nρ, the
w-weighted degree of ξ is defined as

degw(ξ) = max{deg1,� ξs(x) + ws, ∀s}. (19)

The leading position of ξ is

LPw(ξ) = max{s | deg1,� ξs(x) + ws = degw(ξ)} (20)
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TABLE I

COMPLEXITY FOR COMPUTING A WEAK POPOV FORM OF Ξ ∈ Fq[x]ρ×ρ

and the leading term of ξ is

LTw(ξ) = ξLPw(ξ)(x). (21)

Coefficient of the leading monomial of LTw(ξ) is called its
leading coefficient, denoted as LC(LTw(ξ)).

Definition 4: Given a matrix Μ over Fq[x], let Μt and Μt,s

denote its row-t and its entry of row-t column-s, respectively,
the w-weighted degree of Μ is

degw Μ = max{degw Μt, ∀t}. (22)

Note that in the un-weighted variants of the above defin-
itions, degw(ξ), LPw(ξ), LTw(ξ) and degw Μ are simplified

into deg(ξ), LP(ξ), LT(ξ) and deg Μ, respectively.
Definition 5: Given a square matrix Μ over Fq[x], it is in the

weak Popov form if and only if LP(Μt) �= LP(Μt�), ∀t �= t�.
Presenting the interpolation module basis as a square matrix

in Fq[x], the Gröbner basis is reached if it is reduced into
the weak Popov form [25]. The desired interpolation polyno-
mial Q is the minimum candidate of the Gröbner basis. There
exist several algorithms for reducing matrix Μ into the weak
Popov form including the Lee-O’Sullivan algorithm [26], the
MS algorithm [28], the Alekhnovich algorithm [29] and the
GJV algorithm [30]. Their complexity mainly depend on deg Μ
and the orthogonality defect Δ(Μ) that is defined as

Δ(Μ) = rowdegΜ − deg detΜ ≤ ρ deg Μ,

where rowdegΜ =
∑ρ−1

t=0 deg Μt and detΜ denotes the
determinant of Μ. Let Υ(u) denote the number of finite
field arithmetic operations needed in multiplying two poly-
nomials of degree at most u. For finite fields that support
the fast Fourier transformation, Υ(u) = 18u logu + O(u),
while in general, Υ(u) = (18 + 72 log3 2)u log u log log u +
O(u log u) [37]. Table I summarizes the complexity of the
existing basis reduction techniques, where O∼ denotes the
complexity characterization O without considering the log
factors, and π (π ≤ 3) denotes the exponent for multiplication
of Fq matrices. Table I shows the Alekhnovich and the GJV
algorithms exhibit an asymptotically lower complexity than
the other two algorithms. Note that normally ρ � Δ(Μ) and
ρ � deg Μ. However, they rely on the fast multiplication
techniques which contribute to a large constant factor that is
not reflected in the characterizations. This research has found
out that the Lee-O’Sullivan and the MS algorithms are more
efficient for handling codes of practical length. Therefore,
we use the Lee-O’Sullivan algorithm for the basis reduction.
Its complexity issue will be addressed again in Section V.

III. THE BR INTERPOLATION

The BR interpolation consists of module basis con-
struction and its reduction. The former constructs a basis

of Fq[x]-module consisting of polynomials which satisfy the
interpolation constraints. Gröbner basis of the module will be
obtained by reducing this basis, where its minimum candidate
is the desired polynomial Q.

A. Prerequisites

Let P = E(Fq) \ {P∞} denote the set of affine points
on E. Let A denote the set of x-coordinates xi of all elements
in P , and Bi = {y | y2+a1 xiy+a3 y = x3

i +a2x
2
i +a4xi+a6}

as the set of y-coordinates defined by xi. Note that |A| = n/2.
If Pi = −Pi� , xi = xi� , Bi = Bi� and |Bi| = 2, ∀i.

Theorem 3: Let a divisor G =
∑n−1

i=0 [Pi], div(G) = G −
n[P∞], where

G =
∏
α∈A

(x− α). (23)

Proof: For each α ∈ A, there exist two different affine
points Pi and Pi� such that div(x−α) = [Pi]+ [Pi� ]−2[P∞].
Therefore, div(

∏
α∈A

(x− α)) = G− n[P∞].
The following Lagrange interpolation functions over Fq[x]

are introduced.
Theorem 4: Given r = (r0, r1, . . . , rn−1) ∈ Fn

q , let

Kr =
n−1∑
i=0

riLi. (24)

where

Li =
∏

α∈A\{xi}

x− α

xi − α

∏
β∈Bi\{yi}

y − β

yi − β
. (25)

Note that Kr ∈ R. It satisfies Kr(Pi) = ri, Kr(Pi� ) = 0,
∀i� �= i and deg1,k Kr ≤ n+ 1. The complexity of computing
Kr is O∼(n).

Proof: Since |Bi| = 2, degy Li < 2, i.e., Kr ∈ R.
Substituting Pi into Li yields Li(Pi) = 1. For i� �= i,
Li(Pi�) = 0. Hence, Kr(Pi) = ri, and Kr(Pi� ) = 0, ∀i� �= i.
Since deg1,k Li = n+ 1, deg1,k Kr ≤ n+ 1.

Let Pi = (xi, yi) and −Pi = (xi, y
∗
i ), i.e., Bi = {yi, y

∗
i }.

Kr of (24) can be written as

Kr = y

n−1∑
i=0

ri
yi − y∗i

∏
α∈A\{xi}

x− α

xi − α

−
n−1∑
i=0

riy
∗
i

yi − y∗i

∏
α∈A\{xi}

x− α

xi − α
.

Since 1
yi−y∗

i
and y∗

i

yi−y∗
i

are pre-computed, computing
Kr can be seen as two univariate interpolation problems
for n

2 points. Using the fast interpolation algorithm of [37],
computing Kr exhibits a complexity of O∼(n).
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B. Basis Construction

Let IP ⊂ R[z]l denote a set of polynomials Q which have
a zero of multiplicity m at the interpolation points of P. Note
that IP is an R-module. Based on Theorems 3 and 4, for an
interpolation point (Pi, ri), G(Pi) = 0 and ri − Kr(Pi) = 0.
Polynomials G and z −Kr interpolate all points of P.

To introduce the basis construction, the following Lemma is
needed.

Lemma 5: Let Q =
∑ρ

j=0Q[j]z
j ∈ IP with degz Q =

ρ < m, Gm−ρ|Q[ρ].
Proof: Since Q ∈ IP, w.r.t. (Pi, ri), it can be written

as Q =
∑

μ+ν≥mQμνΛμ
i (z − ri)ν . Since degz Q = ρ < m

and ν ≤ ρ, Q[ρ] =
∑

μ≥m−ρQμρΛ
μ
i , i.e., Λm−ρ

i |Q[ρ]. For an
affine point Pi without an order of two, Λi can be in the form
of Λi = x− xi. Therefore, Gm−ρ|Q[ρ].

Following a similar manner to [12] and [26], the following
module generators are introduced.

Theorem 6: IP is generated as an R-module by the fol-
lowing l+ 1 polynomials in R[z]l

H(j) = Gm−j(z −Kr)j , if 0 ≤ j ≤ m, (26)

H(j) = zj−m(z −Kr)m, if m < j ≤ l. (27)

They are called the module generators.
Proof: Since both G and z − Kr interpolate all points

of P, H(j) has a zero of multiplicity at least m at the points,
i.e., H(j) ∈ IP. Note that for polynomial H(l), H(l)

[l] = 1.

Given a polynomial Q ∈ IP, there exists hl = Q[l] such

that Q(l−1) = Q − hlH(l), where degz Q
(l−1) ≤ l − 1.

Similarly, eqs. (26) and (27) show that H(j)
[j] = 1 for m ≤ j ≤

l − 1. There exist polynomials hj ∈ R such that Q(m−1) =
Q(l−1)−∑l−1

j=m hjH(j) and degz Q
(m−1) ≤ m−1. Therefore,

Q(m−1) ∈ IP. Based on Lemma 5, we have G|Q(m−1)
[m−1] . Since

H(m−1)
[m−1] = G, there exists hm−1 =

Q
(m−1)
[m−1]

G ∈ R such that

Q(m−2) = Q(m−1) − hm−1H(m−1) with degz Q
(m−2) ≤

m−2. Following the same manner, when 1 ≤ j ≤ m−2, Q(j)

can be deduced using H(j), until Q(0) = h0Gm is reached.
With the above module generators, the module basis can be

generated as follows.
Theorem 7: IP is generated as an Fq[x]-module by the

following basis

MP = {Mt |Mt = y(t mod 2)H(	 t
2 
), 0 ≤ t ≤ 2l+ 1}.

(28)

Proof: Based on Theorem 6, for each Q ∈ IP, there exist
h0, . . . , hl ∈ R such that Q =

∑l
j=0 hjH(j). Since hj can

be written as hj = h
(0)
j + h

(1)
j y, where h

(0)
j , h

(1)
j ∈ Fq[x],

Q =
∑l

j=0

∑1
s=0 h

(s)
j (ysH(j)).

Therefore, given P, polynomials G and Kr can be defined.
They constitute the module generators of (26) and (27), which
lead to the module basis construction of (28). The following
Theorem characterizes complexity of this basis construction.

Theorem 8: Constructing the basis MP of (28) exhibits a
complexity of O∼(m3n).

Proof: Given an (n, k) elliptic code, Gj for j =
1, 2, . . . ,m can be computed offline, and we also know the
complexity of computing Kr is O∼(n). Eq. (24) can be
written as Kr = κ0(x) + κ1(x)y, where degx κi(x) < n

2
for i = 0, 1. Therefore, computing Kr,K2

r , . . . ,Km
r exhibits

a complexity of O∼(m2n). Also note that they need to be
rationalized into R of (3). Its complexity would be O(mn).
Subsequently, computing the module generators H(j) has a
complexity of O∼(m3n).

C. Basis Reduction

Basis MP will be further reduced, yielding the Gröbner
basis M�

P that contains the interpolation polynomial Q.
Since R[z]l is a free module over Fq[x] with a rank of

2(l + 1), it has a free basis of {1, y, z, yz, . . . , zl, yzl}. IP

is a submodule of R[z]l. For each Q ∈ IP, it can be
expressed as Q = Q(0) + Q(1)y + · · · + Q(2l+1)yzl, where
Q(0), Q(1), . . . , Q(2l+1) ∈ Fq[x]. They can also be written as

Q = (Q(0), Q(1), . . . , Q(2l+1))(1, y, . . . , yzl)T . (29)

Similarly, the basis polynomial can be written as

Mt = (M (0)
t ,M

(1)
t , · · · ,M (2l+1)

t )(1, y, . . . , yzl)T . The basis
MP can be represented as a matrix V in Fq[x] by letting

Vt = (M (0)
t ,M

(1)
t , . . . ,M

(2l+1)
t ), (30)

where Vt,s = M
(s)
t and s = 0, 1, . . . , 2l+1. Therefore, Mt =

Vt · (1, y, . . . , yzl)T . Based on eqs. (26)-(28), it can be seen
that V is a lower triangular matrix. By letting ws = k� s

2� +
3(s mod 2), we have degw Vt = deg1,k Mt.

The Lee-O’Sullivan basis reduction algorithm will be
applied to reduce MP into the desired Gröbner basis. For each
row Vt, LPw(Vt) can be determined. Row operations of V will
be performed until LPw(Vt) = t. Since M0 = Gm and M1 =
Gmy, LPw(V0) = 0 and LPw(V1) = 1. The row operation
can start from V2. In general, if LPw(Vt) = t, Vt does not
need to be modified. Row Vt+1 will be further processed.
If LPw(Vt) = t� and t �= t�, we let u = degw Vt − degw Vt�

and v = LC(LTw(Vt))LC(LTw(Vt�))−1. If u ≥ 0, Vt will be
updated by

V �
t = Vt − vxuVt� . (31)

Otherwise, Vt� and Vt will be updated by

V �
t� = Vt (32)

and
V �

t = x−uVt − vVt� . (33)

Note that the update of Vt only involves the first t−1 rows
of V , which does not change the leading position of those
rows. Finally, the updated matrix V � satisfies LPw(V �

t) = t,
∀t. The updated polynomials can be further obtained by

M �
t = V �

t · (1, y, . . . , yzl)T , (34)

which form the Gröbner basis M�
P of IP.

The minimum candidate of M�
P is chosen as the interpola-

tion polynomial Q.
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Algorithm 1 The BR Interpolation
Input: r and m;
Output: Q;

1: Initialize MP as in (26)-(28);
2: Represent MP as matrix V over Fq[x] as in (30);
3: Reduce V into a weak Popov form matrix V � using Lee-

O’Sullivan’s algorithm;
4: Demap the matrix V � to M�

P as in (34);
5: Pick up the minimum candidate from M�

P as Q.

Summarizing the above description, the BR interpolation
algorithm for GS decoding of elliptic codes can be stated as
the follows.

The complexity and validity of the above interpolation
algorithm is further characterized as the follows.

Theorem 9: Algorithm 1 is correct. Given basis MP , they
can be presented as a matrix V ∈ Fq[x]2(l+1)×2(l+1). The
complexity of Algorithm 1 is O(l3m2 n(n− k)).

Proof: Based on Theorem 7, MP generates the Fq[x]
module IP. Therefore, M�

P obtained by Fq[x] row operations
is still a basis of IP. For Q ∈ IP, by (29), let Q =
Q(1, y, . . . , yzl)T , where Q = (Q(0), Q(1), . . . , Q(2l+1)).
Since the updated matrix V � satisfies LPw(V �

t) = t, ∀t, there
exists t such that LPwQ = LPwV �

t and LTwV �
t | LTwQ.

Therefore, M�
P is a Gröbner basis of IP, and the minimum

polynomial of IP is also the minimum element of M�
P.

Therefore, Algorithm 1 is correct.
Based on Theorem 8, complexity of constructing the basis

MP is O∼(m3n). Since deg1,k G = n and deg1,k Kr ≤ n+1,
degw V ≤ degw V2l+1,2(l−m)+1 ≤ m(n+ 1) + k(l −m) + 3.
If t = 0, 1, . . . , 2m + 1, degw Vt = mn + 3t − 5� t

2� and
degw Vt,t = n(m − � t

2�) + wt. If t = 2m + 2, 2m + 3, . . . ,
2l+ 1, degw Vt = m(n+ 1) + k
 t−2m−1

2 �+ 3(t mod 2) and

degw Vt,t = wt. Therefore, rowdegV =
∑2l+1

t=0 degw Vt ≈
2lmn+ k(l −m)2 + 3l and deg detV =

∑2l+1
t=0 degw Vt,t ≈

m2n+ l2k+ 3l. Hence, Δ(V) ≈ ml(n− k). Therefore, based
on Table I, reducing V into a Gröbner basis requires at most

(2l+ 2)2 degw VΔ(V) ≈ 4 l3 m(n− k)(mn+ kl− km)

multiplications.
Based on Theorem 1, message polynomial f can be further

decoded by finding z-roots of Q, i.e., Q(x, y, f) = 0,
which can be realized by the recursive coefficient search
algorithm [35], [36]. Its complexity is quadratic in n. Although
it has the same asymptotic complexity as the interpolation
process, in practice, the root-finding complexity will be mar-
ginalized by interpolation. Based on the root-finding algorithm
for RS codes [38], Alekhnovich provided a faster approach that
yields a quasi-linear complexity in n [29]. By using the con-
cept of power series, Beelen and Høholdt further provided the
root-finding algorithm for decoding AG codes [39]. Nielsen
and Beelen also generalized Alekhnovich’s work to decode
Hermitian codes [12], which yields a root-finding complexity
that is sub-quadratic in n. They can be considered for decoding

of elliptic codes. But the same asymptotic complexity (sub-
quadratic in n) cannot be straightforwardly reached.

IV. THE RE-ENCODING TRANSFORMED INTERPOLATION

Re-encoding transform helps reduce the BR interpolation
complexity by reducing x-degree of the basis entries. The
following introduces the transform of interpolation points and
the subsequent basis construction. The basis reduction remains
unchanged.

A. Transform of the Interpolation Points

First, ε interpolation points in P will be chosen as
the re-encoding points for the transform. Let Γ denote the
index set of these re-encoding points, and Γc denote the
index set of the remaining points. With a received word
r = (r0, r1, . . . , rn−1), the re-encoding polynomial KΓ ∈
L(k[P∞]) needs to be constructed for the transform.

Given E, let PΓ = {Pi | i ∈ Γ}. For the points of PΓ,
we further denote AΓ = {xi | i ∈ Γ}, AΓc = A \ AΓ and
B

(i)
Γ = {y | (xi, y) ∈ PΓ}.
The re-encoding polynomial KΓ can be defined as follows.
Theorem 10: Let

KΓ =
∑
i∈Γ

riL(i)
Γ , (35)

where

L(i)
Γ =

∏
α∈AΓ\{xi}

x− α

xi − α

∏
β∈B

(i)
Γ \{yi}

y − β

yi − β
. (36)

It satisfies KΓ(Pi) = ri, ∀i ∈ Γ. Furthermore, let σ = |{i |
|B(i)

Γ | = 1, i ∈ Γ}|, deg1,k KΓ = ε+ σ + 1.

Proof: Eq. (36) ensures L(i)
Γ (Pi) = 1, and L(i)

Γ (Pi� ) = 0,
∀i� �= i and i ∈ Γ. Therefore, KΓ(Pi) = ri, ∀i ∈ Γ.
If |B(i)

Γ | = 1, deg1,k L(i)
Γ = ε+σ−2. Otherwise, deg1,k L(i)

Γ =
ε+ σ + 1. Therefore, deg1,k KΓ = ε+ σ + 1.

With the re-encoding polynomial, a new codeword can be
generated by

c� = (KΓ(P0),KΓ(P1), . . . ,KΓ(Pn−1))
= (c�0, c

�
1, . . . , c

�
n−1). (37)

The received word r = (r0, r1, . . . , rn−1) can therefore be
transformed by

r� = r − c�, (38)

where r�i = ri − c�i. To simplify the description of the re-
encoding transformed interpolation, the following encoding
point rearrangement is needed.

Proposition 11: The evaluation encoding order of (6) is
rearranged such that the affine points with the same x-
coordinate are adjacent to each other.

Therefore, without loss of generality, the first ε interpo-
lation points are chosen as the re-encoding points, i.e., Γ =
{0, 1, . . . , ε−1} and Γc = {ε, ε+1, . . . , n−1}. Based on (38),
the transformed received word becomes

r� = (0, . . . , 0, r�ε, . . . , r
�
n−1). (39)
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Consequently, the set of interpolation points P is trans-
formed into

P� = {(P0, 0), . . . , (Pε−1, 0), (Pε, r
�
ε), . . . , (Pn−1, r

�
n−1)}.

(40)

This enables the basis polynomials yield a common factor,
which can be removed before the basis reduction. Note that
KΓ ∈ L(k[P∞]), i.e., ε+σ+1 ≤ k, which limits the number of
re-encoding points. In order to maximize the number of points
(in P�) with coordinate being zero, σ should be as small as
possible.

Corollary 12: Given CE(G, k[P∞]) and σ ≤ 1, if k is odd,
ε = k − 1; otherwise, ε = k − 2.

Proof: Recalling Theorem 10, if ε is even, i.e., σ = 0,
deg1,k KΓ = ε+1. Otherwise, deg1,k KΓ = ε+2. To construct
an (n, k) elliptic code, we need to maintain deg1,k KΓ ≤ k.
Hence, if k is odd, ε = k − 1. Otherwise, ε = k − 2.

B. Basis Construction

Let IP� ⊂ R[z]l denote a set of Q which have a zero of
multiplicity m at the transformed interpolation points in P�.
The following theorem describes the relationship between IP�

and IP.
Theorem 13: Q is the interpolation polynomial in IP if and

only if Q̃ = Q(x, y, z + KΓ) is also one in IP� .
Proof: Based on Theorem 7, if Q ∈ IP, Q(x, y, z +

KΓ) =
∑l

j=0

∑1
s=0 h

(s)
j (ysH̃(j)), where h

(s)
j ∈ Fq[x] and

H̃(j) = H(j)(x, y, z + KΓ). Based on eqs. (26) and (27),

H̃(j) = Gm−j(z + KΓ −Kr)j , if 0 ≤ j ≤ m,

H̃(j) = (z + KΓ)j−m(z + KΓ −Kr)m, if m < j ≤ l.

Since Kr(Pi) − KΓ(Pi) = ri − c�i = r�i, H̃(j) has a
zero of multiplicity m at the transformed interpolation points,
i.e., H̃(j) ∈ IP� . Therefore, Q̃ ∈ IP� . If Q̃ ∈ IP� , Q ∈ IP.

Since deg1,k KΓ ≤ k, deg1,k z = deg1,k(z + KΓ) = k, and
deg1,k Q̃ = deg1,k Q. If Q is the interpolation polynomial
in IP, Q̃ ∈ IP� . If there exists Q̃� ∈ IP� which satisfies
deg1,k Q̃� < deg1,k Q̃, Q� = Q̃�(x, y, z − KΓ) ∈ IP and it
satisfies deg1,k Q� = deg1,k Q̃�. This leads to deg1,k Q� <
deg1,k Q. It contradicts Q being the minimum polynomial
of IP. Therefore, Q̃ is the minimum interpolation polynomial
in IP� , and vice versa.

Therefore, the interpolation polynomial Q can be obtained
by Q = Q̃(x, y, z − KΓ). To describe the basis construction
in the case of re-encoding transform, the following notations
are needed. Note that polynomial G of (23) can be factorized
into

G = GΓGΓc , (41)

where

GΓ =
∏

α∈AΓ

(x− α) (42)

and

GΓc =
∏

α∈AΓc

(x− α). (43)

Based on r� (eq. (39)) and P� (eq. (40)), Kr� of (24) can
be defined as

Kr� =
ε−1∑
i=0

0 · Li +
n−1∑
i=ε

r�iLi

= GΓ

n−1∑
i=ε

r�i
GΓ(xi)

∏
α∈AΓc\{xi}

x− α

xi − α

∏
β∈Bi\{yi}

y − β

yi − β
.

Therefore, GΓ becomes the GCD for both G and Kr� . Let
us rewrite Kr� as

Kr� = GΓKΓc , (44)

where

KΓc =
n−1∑
i=ε

r∗i L(i)
Γc , (45)

r∗i =
r�i

GΓ(xi)
, (46)

and

L(i)
Γc =

∏
α∈AΓc\{xi}

x− α

xi − α

∏
β∈Bi\{yi}

y − β

yi − β
. (47)

For the transformed interpolation points of P�, its subset
{(Pi, r

�
i) | i ∈ Γc} can be further transformed into

P∗ = {(Pε, r
∗
ε), . . . , (Pn−1, r

∗
n−1)}. (48)

Note that for (Pi, r
�
i) where i ∈ Γ, since r�i = 0, (Pi, r

∗
i ) =

(Pi, r
�
i). Similarly, let IP∗ ⊂ R[z]l denote a set of some Q∗

which have a zero of multiplicity m at the points of P∗. The
following Lemma first reveals the property of the polynomials
in IP� .

Lemma 14: If Q ∈ IP� , Gm
Γ | Q(x, y, zGΓ).

Proof: Based on Theorem 6, Q can be written as Q =∑l
j=0 hjH(j), which can be further elaborated as

Q =
m∑

j=0

hjGm−j
(
z −Kr�

)j +
l∑

j=m+1

hjz
j−m

(
z −Kr�

)m
=

m∑
j=0

hjGm−j (z − GΓKΓc)j

+
l∑

j=m+1

hjz
j−m (z − GΓKΓc)m

= Gm
Γ

(
m∑

j=0

hjGm−j
Γc

(
z

GΓ
−KΓc

)j

+
l∑

j=m+1

hjGj−m
Γ

(
z

GΓ

)j−m(
z

GΓ
−KΓc

)m
)
.

Therefore,

Q(x, y, zGΓ) = Gm
Γ

( m∑
t=0

hjGm−j
Γc (z −KΓc)j

+
l∑

j=m+1

hjGj−m
Γ zj−m (z −KΓc)m

)
. (49)

Thus, Gm
Γ | Q(x, y, zGΓ).
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Armed with the above lemma, the following bijective map-
ping between the polynomials of IP� and those of IP∗ can be
established

Ψ : IP� → IP∗

Q(x, y, z) �→ Q∗(x, y, z) = G−m
Γ Q(x, y, zGΓ), (50)

where Ψ is an Fq[x]-module isomorphism between IP�

and IP∗ . Therefore, IP∗ can be generated as an Fq[x]-module
by the following 2l + 2 polynomials

MP∗ = {M∗
t | M∗

t = y(t mod 2)H(	 t
2 
)

Γ , 0 ≤ t ≤ 2l+ 1},
(51)

where

H(j)
Γ = Gm−j

Γc (z −KΓc)j , if 0 ≤ j ≤ m, (52)

H(j)
Γ = (GΓz)j−m(z −KΓc)m, if m < j ≤ l. (53)

PolynomialsM∗
t of (51) have a zero of multiplicity m at the

points of P∗. Comparing with the polynomials of MP (see
eqs. (26)-(28)), polynomials of MP∗ have lower x-degrees.
This can reduce the basis reduction complexity. If Q∗ ∈ IP∗ ,
it can be written as an Fq[x]-linear combination of the above
polynomials, i.e.,

Q∗ =
2l+1∑
t=0

htM
∗
t , (54)

where ht ∈ Fq[x]. We further prove that constructing IP∗ will
be sufficient to obtain the interpolation polynomial Q.

Lemma 15: If Q ∈ IP� , deg1,k Q = deg1,� Gm
Γ +

deg1,� Q∗, where � = 1 if k is odd, otherwise, � = 2.
Proof: Based on eq. (50), we know Q = Gm

Γ Q
∗(x, y, z

GΓ
).

Let Q∗ =
∑l

j=0Q
∗
[j]z

j , where Q∗
[j] ∈ R, it follows that

deg1,k Q = deg1,k Gm
Γ + deg1,k Q

∗
(
x, y,

z

GΓ

)
= deg1,k Gm

Γ + deg1,k

l∑
j=0

Q∗
[j]

(
z

GΓ

)j

= deg1,k Gm
Γ + max

0≤j≤l
{deg1,k Q

∗
[j]

+ j(k − deg1,k GΓ)}.
Therefore, deg1,k Q = deg1,� Gm

Γ +deg1,� Q∗, where � =
k − deg1,k GΓ. Based on Corollary 12 and (42), if k is odd,
deg1,k GΓ = k − 1; otherwise, deg1,k GΓ = k − 2.

Since M∗
t = M

∗(0)
t + M

∗(1)
t y + · · · + M

∗(2l+1)
t yzl,

polynomials of MP∗ can be represented as a matrix V∗ ∈
Fq[x]2(l+1)×2(l+1) by letting

V∗
t = (M∗(0)

t ,M
∗(1)
t , . . . ,M

∗(2l+1)
t ). (55)

Hence, M∗
t = V∗

t ·(1, y, . . . , yzl)T and V∗
t,s = M

∗(s)
t . Based

on Lemma 15, if k is odd, � = 1, ws = � s
2� + 3(s mod 2)

for s = 0, 1, . . . , 2l + 1 and degV∗
t = deg1,1M

∗
t . Otherwise,

� = 2, ws = 2� s
2� + 3(s mod 2) and deg V∗

t =
deg1,2M

∗
t . We can further apply the row reduction described

in Section III.C to reduce MP∗ into a Gröbner basis w.r.t. the
(1, �)-revlex order, denoted as M�

P∗ .

Theorem 16: Given Q∗ as the minimum polynomial in IP∗ ,
the interpolation polynomial Q can be obtained by

Q = Gm
Γ Q∗

(
x, y,

z −KΓ

GΓ

)
. (56)

Proof: Based on Theorem 13, if Q̃ is the interpolation
polynomial in IP� , Q = Q̃(x, y, z − KΓ) will be the inter-
polation polynomial in IP. Therefore, we only need to prove
that Q̃ = Gm

Γ Q∗
(
x, y, z

GΓ

)
is the interpolation polynomial

in IP� . The mapping of (50) shows that if Q∗ ∈ IP∗ ,
Q̃ ∈ IP� . If there exists a polynomial Q̃� ∈ IP� that satisfies
deg1,k Q̃� < deg1,k Q̃, Q∗� = G−m

Γ Q̃�(x, y, zGΓ). Based
on Lemma 15, deg1,� Gm

Γ + deg1,� Q∗� < deg1,� Gm
Γ +

deg1,� Q∗, i.e., deg1,� Q∗� < deg1,� Q∗ , which contradicts
Q∗ being the minimum polynomial in IP∗ .

Therefore, after constructing MP∗ , we can first obtain Q∗

by Lee-O’Sullivan’s algorithm that was introduced in
Section III.C. Based on (50), the interpolation polynomial Q̃
can be further obtained by

Q̃ = Gm
Γ Q∗

(
x, y,

z

GΓ

)
, (57)

which interpolates the interpolation points of (40) with a mul-
tiplicity of m. The z-roots f � of Q̃ can be further determined.
Estimation of the intended message polynomial f can be
further obtained by

f̂ = f � + KΓ. (58)

Summarizing the above description, the above re-encoding
transformed BR interpolation algorithm is stated as follows.

Algorithm 2 The ReT BR Interpolation
Input: r and m;
Output: Q̃;

1: Transform the set of interpolation points of P into P� as
in (37)-(40);

2: Obtain subset P∗ of (48);
3: Initialize MP∗ as in (51)-(53);
4: Represent MP∗ as matrix V∗ over Fq[x] as in (55);
5: Reduce V∗ into a weak Popov form matrix V∗� using

Lee-O’Sullivan’s algorithm;
6: Demap the matrix V∗� as M�

P∗ as in (34);
7: Pick up the minimum candidate from M�

P∗ as Q∗;
8: Construct Q̃ as in (57).

Based on Table I, the following Theorem shows the correct-
ness and characterizes the complexity of Algorithm 2.

Theorem 17: Algorithm 2 is correct. Given basis MP∗ ,
it can be presented as a matrix V∗ ∈ Fq[x]2(l+1)×2(l+1). The
complexity of Algorithm 2 is O(l3 m2(n− k)2).

Proof: Based on eqs. (50) and (51), MP∗ is a basis
of IP∗ . By using Lee-O’Sullivan’s algorithm, MP∗ can be
reduced into a Gröbner basis of IP∗ w.r.t. the (1, �)-revlex
order. Based on Theorem 16 and (57), Q̃ is a minimum
polynomial of module IP� . Therefore, by determining the
z-roots f � of Q̃, the intended message polynomial f can be
further obtained. Therefore, Algorithm 2 is correct.
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TABLE II

COMPLEXITY FOR REDUCING V INTO THE WEAK POPOV FORM

For an (n, k) elliptic code, based on Theorem 4, the re-
encoding polynomial KΓ of (35) can be computed with a com-
plexity of O∼(k). Obtaining the interpolation points of (48)
requires O∼(n) field operations. Since deg1,k KΓc ≤ n−ε+1,
computing KΓc requiresO∼(n−ε) field operations. Therefore,
computing H(t)

Γ of (52) and (53) requires O∼(m3(n − ε))
and O∼(m2(l − m)n) field operations, respectively. Hence,
complexity of the basis construction is O∼(m3n).

Based on (51) and (55), if 0 ≤ t ≤ 2m + 1, degV∗
t =

m(n − ε) + � t
2�(1 − �) + wt and degV∗

t,t = (n − ε)(m −
� t

2�) + wt. If 2m + 1 < t < 2l + 2, deg V∗
t = m(n −

2ε −� + 1) + ε� t
2� + wt and deg V∗

t,t = ε(� t
2� −m) + wt.

Therefore, deg V∗ ≤ m(n − ε + 1) + (l − m)(ε + �) + 3
and Δ(V∗) < 2ml(n − k). Reducing V∗ into a Gröbner
basis requires at most (2l + 2)2 degw V∗Δ(V∗) ≈ 8l3m(n −
k) (m(n− k) + k(l −m)) field operations. Moreover, restor-
ing the interpolation polynomial as in (57) requires O∼(lmn)
field operations. Therefore, the complexity of Algorithm 2 can
be characterized as O(l3 m2(n− k)2).

In comparison with Theorems 8 and 9, it can be seen that the
ReT helps reduce both of the basis construction and reduction
complexity by a factor of k

n . Therefore, this reduction will be
more effective for high rate codes.

V. COMPLEXITY COMPARISON

We will further investigate the complexity of the basis
reduction process using different approaches including the
Lee-O’Sullivan algorithm [26], the MS algorithm [28], the
Alekhnovich algorithm [29] and the GJV algorithm [30]. This
analysis will reveal that the Lee-O’Sullivan algorithm remains
the most efficient for decoding codes of practical length.

Given a matrix V as in (30), different from Lee-O’Sullivan’s
algorithm, the following mapping Φw is needed before the
other three algorithms are used to reduce V into the weak
Popov form. Define the mapping Φw [12]: Fq[x]2(l+1) →
Fq[x]2(l+1)

Vt �→ Vt =(xw0M
(0)
t (x), xw1M

(1)
t (x), . . . ,

xw2l+1M
(2l+1)
t (x)), (59)

where w = (w0, w1, . . . , w2l+1) and ws = �k	 s
2 
+3(s mod 2)

2 �.
Therefore, matrix V will be reduced. We now look into the
complexity of the other three basis reduction algorithms under
the decoding paradigm without the ReT.

Theorem 18: Given a matrix V ∈ Fq[x]2(l+1)×2(l+1),
the complexity of reducing V into the weak Popov form is
summarized in Table II.

Proof: Based on (59), we know deg V ≤ degx

V2l+1,2l−2m < mn
2 + k(l−m)

2 . If 0 ≤ t ≤ 2m + 1,

deg Vt ≈ mn
2 and deg Vt,t ≈ n

2 (m − t
2 ) + wt. If 2m + 2 ≤

t ≤ 2l + 1, deg Vt ≈ mn
2 + k t−2m

4 and deg Vt,t = wt.

Therefore, rowdegV =
∑2l+1

t=0 deg Vt ≈ lmn + k
2 (l − m)2

and deg det V =
∑2l+1

t=0 deg Vt,t ≈ m2n
2 + l2k

2 . Hence,
Δ(V) ≈ ml(n−k). Based on the characterizations of Table I,
the complexity characterizations in l,m and n for the Lee-
O’Sullivan (and MS) algorithm, the Alekhnovich algorithm
and the GJV algorithm are given in (60), (V), and (V),
respectively. Omitting the log factors, their complexity char-
acterizations in O∼ are further summarized in Table II.

2l2mn(lm(n− k) + 2l), (60)

(18 + 72 log3 2)(2l)ζ(ml(n− k) log2(ml(n− k))
· log log(ml(n− k)) +mn log(mn) log log(mn)), (61)

(18 + 72 log3 2)(2l)ζmn log(mn) log(lmn)

· log(m2n) log log(mn). (62)

Since π ≤ 3, Theorem 18 shows that the Alekhnovich
and the GJV algorithms have lower asymptotically com-
plexity. However, by carefully investigating the expressions
of (60)-(V), we know that for practical l, m and n, the
Lee-O’Sullivan and the MS algorithms would yield a lower
complexity. Note that the running times of the MS and
the Alekhnovich algorithms in Magma have been examined
in [31], which also showed the former has a smaller running
time when n is less than 3000.

VI. SIMULATION RESULTS

GS decoding of elliptic codes using the proposed BR inter-
polation have been simulated using C programming language.
It is measured over the additive white Gaussian noise (AWGN)
channel using BPSK. The decoding performances are pre-
sented as a function of the signal-to-noise ratio (SNR) which is
defined as Eb/N0, where Eb and N0 are the transmitted energy
per information bit and the noise power density, respectively.
For the BPSK modulated transmission, codeword symbols
are firstly converted into binary representations, and 0 and 1
are mapped to the BPSK symbols of (1, 0) and (−1, 0),
respectively. The decoding complexity is measured as the
number of finite field arithmetic operations needed in decoding
a codeword. The elliptic codes are compared with similar rate
RS codes that are defined over the same finite field.

Figs. 1-3 show the frame error rate (FER) performance of
the (80, 27), the (80, 39) and the (288, 163) elliptic codes,
respectively. Our results show that with the same interpolation
multiplicity m, elliptic codes can outperform their RS coun-
terparts. Note that for all the codes, we choose the minimum
m that yields the corresponding error-correction capability.
The decoding parameters are defined in Theorem 2. Over
the same finite field, elliptic codes are longer. They inherit a
greater error-correction capability, yielding a better decoding
performance. It is interesting to point out that this also enables
elliptic codes achieve a similar performance as RS codes
with a smaller decoding complexity. E.g., Fig.1 shows that
decoding the (80, 27) elliptic code with m = 4 performs
similarly as decoding the (63, 21) RS code with m = 5.
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Fig. 1. Performance of the (80, 27) elliptic code and the (63, 21) RS code.

Fig. 2. Performance of the (80, 39) elliptic code and the (63, 31) RS code.

Fig. 3. Performance of the (288, 163) elliptic code and the (255, 144) RS
code.

The BR interpolation complexity is 1.16× 107 for the elliptic
code, and 1.20 × 107 for the RS code. If using Kötter’s
interpolation, the complexity will be 1.65×107 for the elliptic
code, and 2.72× 107 for the RS code. A similar phenomenon
can also be observed in Figs. 2 and 3. They demonstrate that
elliptic codes can be considered to replace RS codes for better
performance. Note that the optimal GS decoding performances
are obtained by assuming the algorithm can decode at most
τGS errors, where τGS was defined by eq. (15) for elliptic
codes. For RS codes, τGS = n−

⌊√
n(k − 1)

⌋
− 1.

The proof of Theorem 9 shows that the basis reduction
dominates the interpolation complexity, and its complexity
reduces as the code rate increases. Tables III-IV show the

TABLE III

INTERPOLATION COMPLEXITY IN DECODING THE (80, 27) ELLIPTIC CODE

TABLE IV

INTERPOLATION COMPLEXITY IN DECODING THE (80, 39) ELLIPTIC CODE

TABLE V

RET INTERPOLATION COMPLEXITY IN DECODING
THE (80, 27) ELLIPTIC CODE

TABLE VI

RET INTERPOLATION COMPLEXITY IN DECODING

THE (80, 39) ELLIPTIC CODE

numerical results of the interpolation complexity in decoding
the (80, 27) and the (80, 39) elliptic codes, respectively. Our
numerical results validate the characterization of Theorem 9.
With the same decoding parameters, e.g., m = 2 and l = 3,
the BR interpolation exhibits a smaller complexity for the
(80, 39) elliptic code. Note that the complexity of Kötter’s
interpolation is O(lm4 n2), which exhibits the same asymp-
totic behavior as the BR interpolation. The ratio of the com-
plexity of the two interpolation approaches is l3m2n(n−k)

lm4 n2 =
( l

m )2(1 − k
n ). Since m ≤ l, their comparison depends on the

interplay between l
m and k

n . Our numerical results show in
practice, the BR interpolation has a smaller complexity than
Kötter’s interpolation, with more significant reduction realized
for the higher rate codes.

Tables V-VI show the numerical results of the BR interpola-
tion assisted by the ReT. Pairing Tables III and V, IV and VI,
the complexity reduction factor of k

n can be observed. Note
that with the ReT, Kötter’s interpolation exhibits a com-
plexity of O(lm4 n(n − k)). Therefore, complexity of the
BR interpolation and Kötter’s interpolation still exhibit a ratio
of
(

l
m

)2
(1− k

n ). Our numerical results also show that for the
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elliptic codes, the BR interpolation has a complexity advantage
over Kötter’s interpolation by at most an order of magnitude.

VII. CONCLUSION

This paper has proposed the GS algorithm for decoding
elliptic codes using the module basis reduction interpolation.
The Lagrange interpolation function over the elliptic function
fields has been proposed for constructing the module. A basis
of the module containing polynomials that satisfy all the
interpolation and degree constrains has also been defined.
This basis can be further reduced by the Lee-O’Sullivan
algorithm, resulting in the desired Gröbner basis that contains
the interpolation polynomial Q. The re-encoding transform has
been further introduced to reduce the degree of module basis
entries, yielding a basis isomorphism. Its reduction exhibits
a smaller complexity. This research has further shown the
BR interpolation yields a complexity of O(l3 m2n(n − k)).
Assisted by the re-encoding transform, this complexity can be
reduced to O(l3 m2(n−k)2). They both show the interpolation
technique will have a smaller complexity for high rate codes.
Furthermore, we have analysed the complexity of using the
Alekhnovich and the GJV algorithms for the basis reduc-
tion process. They show a complexity of O∼(lζ+1mn) and
O∼(lζmn), respectively. We have also demonstrated that for
codes of practical length, the Lee-O’Sullivan and the MS algo-
rithms will be more efficient. Finally, the BR interpolation’s
complexity advantage over Kötter’s interpolation has also been
demonstrated. Our simulation results have also demonstrated
that elliptic codes can outperform the similar rate RS codes
defined over the same finite field.
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